Models of Direct Time-of-Flight Sensor Precision with Implications for On-Chip Histogram Processing

Electrical Instrumentation Lab

Lucas J. Koerner, PhD: koerner.lucas@stthomas.edu University of St. Thomas, St. Paul MN **Electrical and Computer Engineering** 2022/05/20

Objectives

- Model depth precision from histogram ulletsignals and sensor design parameters.
- Use models to guide dToF design and • dynamic configuration.
 - Design: optimal TDC bin size?
 - Configuration: exposure time for 2 mm precision?

Model

Symbol	Description	Unit
Ν	Total signal photons collected in peak	-
b	Background photons per TDC bin	-
а	TDC bin width	S
σ	Instrument response function (IRF). Includes laser pulse width, SPAD timing jitter, etc.	S
δ	Resulting depth precision (standard deviation of return time)	S

Gaussian instrument response •

Model

Symbol	Description	Unit
Ν	Total signal photons collected in peak	-
b	Background photons per TDC bin	-
а	TDC bin width	S
σ	Instrument response function (IRF). Includes laser pulse width, SPAD timing jitter, etc.	S
δ	Resulting depth precision (standard deviation of return time)	S

- Simple for modularity lacksquare
- Optical and scene parameters can be • studied based on impact to N, b
 - Example. Lens f-number: N ~ $1/(f/#)^2$, b ~ $1/(f/#)^2$ -

Analytical Models

3) Cramér-Rao Lower Bound (CRB): information limit from Gaussian PDF, most accurate, requires integration over TDC bin

L. J. Koerner, "Models of Direct Time-of-Flight Sensor Precision That Enable Optimal Design and Dynamic Configuration," 10.1109/TIM.2021.3073684

Electrical Instrumentation Lab

Symbo	bl Descript
Ν	signal pho
b	backgroun
a	bin wid
σ	timing jit
δ	precisio

$$\frac{\sqrt{\pi\sigma^3 b}}{aN^2} = \frac{\sigma}{\sqrt{N}} \sqrt{1 + \frac{1}{12} \left(\frac{a}{\sigma}\right)^2 + 4\sqrt{\pi} \left(\frac{\sigma}{a}\right) \left(\frac{b}{N}\right)}$$

Analytical Models

2) Thompson

$$\delta = \sqrt{\frac{\sigma^2 + a^2/12}{N} + \frac{4\sqrt{\pi}\sigma^3 b}{aN^2}} = \frac{\sigma}{\sqrt{N}}\sqrt{1 + \frac{1}{12}\left(\frac{a}{\sigma}\right)^2 + 4\sqrt{\pi}\left(\frac{\sigma}{a}\right)\left(\frac{b}{N}\right)}$$

R. E. Thompson, D. R. Larson, and W. W. Webb, "Precise nanometer localization analysis for individual fluorescent probes," Biophys. J., 10.1016/S0006-3495(02)75618-X

3) Cramér-Rao Lower Bound (CRB): information limit from Gaussian PDF, most accurate, requires integration over TDC bin

L. J. Koerner, "Models of Direct Time-of-Flight Sensor Precision That Enable Optimal Design and Dynamic Configuration," 10.1109/TIM.2021.3073684

Electrical Instrumentation Lab

Symbol Descrip	Symbol
N signal pho	Ν
b backgrour	b
a bin wic	а
σ timing ji	σ
δ precisi	δ

K. A. Winick, "Cramér–Rao lower bounds on the performance of charge coupled-device optical position estimators," JOSA A, 1986. 10.1364/ JOSAA.3.001809

Rearrangement of 2 from: Gyongy, N. A. W. Dutton and R. K. Henderson, "Direct Time-of-Flight Single-Photon Imaging," IEEE Transactions on Electron Devices, <u>10.1109/TED.2021.3131430</u>

Monte Carlo Model Verification

3 fitting methods CoM = center-of-mass

3 models

L. J. Koerner, "Models of Direct Time-of-Flight Sensor Precision That Enable Optimal Design and Dynamic Configuration," <u>10.1109/TIM.2021.3073684</u>

Monte Carlo Model Verification

L. J. Koerner, "Models of Direct Time-of-Flight Sensor Precision That Enable Optimal Design and Dynamic Configuration," <u>10.1109/TIM.2021.3073684</u>

Experimental Validation

- ST VL53L1X ToF sensor looking at gray(ish) wall. Configured for full histogram readout. Histograms processed (Gaussian fit) in host computer. 1.5 m object distance.
- IR LEDs used for adjustable background illumination.

Electrical Instrumentation Lab

- 1) Signal to background ratio
- 2) Coincidence detection
- 3) Regimes
- 4) TDC bin size

Symbol	Descripti
Ν	signal pho [.]
b	background
а	bin widt
 σ	timing jit
δ	precisio

$$\delta = \frac{\sigma}{\sqrt{N}} \sqrt{1 + \frac{1}{12} \left(\frac{a}{\sigma}\right)^2 + 4\sqrt{\pi} \left(\frac{\sigma}{a}\right) \left(\frac{b}{N}\right)^2}$$

 $\frac{b}{N}$

Analytical Model Takeav

1) Let's precisely define signal to backgro

Electrical Instrumentation Lab

		Symbol	Descrip
		Ν	signal ph
Navs		b	backgrou
		а	bin wi
		σ	timing
and the second	a N	δ	precis
ound ratio.	SBR = Where b is the ba	ckground	counts / b
	σb within the signal	oeak.	

Gyongy, N. A. W. Dutton and R. K. Henderson, "Direct Time-of-Flight Single-Photon Imaging," 10.1109/TED.2021.3131430

$$\delta = \frac{\sigma}{\sqrt{N}} \sqrt{1 + \frac{1}{12} \left(\frac{a}{\sigma}\right)^2 + 4\sqrt{\pi} \left(\frac{\sigma}{a}\right) \left(\frac{b}{N}\right)^2}$$

1) Let's precisely define signal to background ratio.

2) Coincidence detection may help prevent TDC pileup but otherwise degrades precision.

Collecting signal photons (N) is more "valuable" than rejecting background photons (b). As a non-linear rate filter, a coincidence circuit cannot distinguish between signal/background.

University of St. Thomas ECE

3) **Regimes**

Signal photon limited: $\delta \sim \frac{1}{\sqrt{N}}$ **Background limited:** $\delta \sim \frac{1}{N}$

Equal con

Electrical Instrumentation Lab

Descript
signal pho
backgroun
bin wid
timing jit
precisio

$$\delta = \frac{\sigma}{\sqrt{N}} \sqrt{1 + \frac{1}{12} \left(\frac{a}{\sigma}\right)^2 + 4\sqrt{\pi} \left(\frac{\sigma}{a}\right) \left(\frac{\sigma}{a}\right)} \frac{1}{b}$$
signal limited background backgro

1) Let's precisely define signal to background ratio.

2) Coincidence detection may help prevent TDC pileup but otherwise degrades precision.

3) Regimes

Signal photon limited: $\delta \sim \frac{1}{\sqrt{N}}$

Background limited: $\delta \sim \frac{1}{N}$

4) TDC bin size of $a \sim 1.5\sigma$ is good enough

Electrical Instrumentation Lab

Optimal Zooming and Limiting Centroid Bias

Optimal Zooming for Precision

- Sensor model: lacksquare
 - Fixed number of TDC bins (F) that zoom in temporally
 - Laser pulses distributed evenly among the zoom windows (# of windows = F/W)

Electrical Instrumentation Lab

Optimal Zooming for Precision

- Sensor model: ●
 - Fixed number of TDC bins (F) that zoom in temporally
 - Laser pulses distributed evenly among the zoom windows (# of windows = F/W)

- Pile-up model:
 - SPADs disabled outside of the zoom window to reduce pile-up
 - Signal & background photons detected at the peak are reduced by e^{-bW}
 - Signal arrives at the end of the window (worst case for pile-up)

Electrical Instrumentation Lab

 $N' = N\left(\frac{W}{F}\right)e^{-bW}$ $b' = b\left(\frac{W}{F}\right)e^{-bW}$

Optimal Zooming for Precision

 Use N' and b' and differentiate precision with respect to W to find precision minimum

$$\frac{d\delta^{'2}}{dW} = \frac{F}{WN}e^{Wb} \left[\frac{\sigma^2 \left(Wb - 1\right)}{W} + \frac{Wa^2 \left(Wb + 1\right)}{12F^2} + \frac{4\sqrt{\pi}Fbc}{N} \right]$$

- 1. IRF and signal photon limited
 - Zoom to W = 1/b
- 2. TDC bin size limited
 - Zoom until the bin resolution is no longer limiting
- Background limited 3.
 - Zoom to W = 2/b

Centroid Bias

- lacksquare
- At modest background levels bias becomes more significant than precision.

$$\hat{t_0}' = \frac{\sum_{i=l}^{r} t_i (I_i + b)}{\sum_{i=l}^{r} (I_i + b)}$$

$$Q_i = I_i + b$$

 I_i : signal photons in bin i

Electrical Instrumentation Lab

Centroid is biased toward the window center in the presence of a uniform background.

bias-free

$$\hat{t}_0 = \frac{\sum_{i=l}^r t_i I_i}{\sum_{i=l}^r I_i}$$

N	b	offset [bins]	Max bias [bins]	δ [bins]
1000	0	1	0.000	0.02
1000	10	1	0.037	0.02
1000	100	1	0.222	0.02
1000	1000	1	0.444	0.05

 $a = 1.5\sigma, s = 3$

Centroid Bias

- lacksquare
- At modest background levels bias becomes more significant than precision.

$$\hat{t}_{0}^{'} = \frac{\sum_{i=l}^{r} t_{i}(I_{i} + b)}{\sum_{i=l}^{r} (I_{i} + b)}$$

bias-free

$$\hat{t}_{0}' = \frac{X}{N} + \frac{b(2s+1)(N)}{2N(2bs)}$$
$$X = \sum_{i=l}^{r} t_{i}I_{i}$$
$$N = \sum_{i=l}^{r} I_{i}$$

Electrical Instrumentation Lab

Centroid is biased toward the window center in the presence of a uniform background.

$\hat{t}_0 = \frac{\sum_{i=l}^r t_i I_i}{r}$					
$\sum_{i=l}^{\prime} I_i$	Ν	b	offset [bins]	Max bias [bins]	δ [bins]
	100	0 0	1	0.000	0.02
$\frac{V(l+r) - 2X}{1 - 2X}$	100	0 10	1	0.037	0.02
	100	0 100	1	0.222	0.02
+b+N	100	0 1000	1	0.444	0.05
		C	$a = 1.5\sigma$	s = 3	
ns-free	bias				

Centroiding to Minimize Bias

- To minimize centroid bias: ullet
 - Limit window span 1.
 - Remove background by subtracting or thresholding 2.
- But (local) background may not be known or may change with time •
- Alternative approach: •
 - Iterative centroid using a shifting (sub-bin) window [Berglund 2008]. 3.

$$\hat{t}_{0}' = \frac{X}{N} + \frac{b(2s+1)(I)}{2N(2bs)}$$
$$X = \sum_{i=l}^{r} t_{i}I_{i}$$
$$N = \sum_{i=l}^{r} I_{i}$$

Electrical Instrumentation Lab

- N(l+r) 2X)(s+b+N)
- as-free

bias

Berglund, Andrew J., et al. "Fast, bias-free algorithm for tracking single particles with variable size and shape." Optics express 10.1364/OE.16.014064

Iterative Centroid (CoM) to Minimize Bias

Alternative approach: iterative centroid using a shifting (sub-bin) window [Berglund 2008]. •

$$\hat{t}_{0_{n+1}} = \frac{\sum_{i=l_n+1}^{r_n-1} t_i Q_i + (0.5 - \Delta_n) t_{c-s} Q_{c-s} + (0.5 + \Delta_n) t_{c+s}}{\sum_{i=l_n+1}^{r_n-1} Q_i + (0.5 - \Delta_n) Q_{c-s} + (0.5 + \Delta_n) Q_{c-s}}$$
A fraction of the leftmost bin A fraction of the rightmost bin

$$2s = r - l$$

$$c = \operatorname{argmin}(\hat{t}_{0_n} - t_i)$$

$$l_{n+1} = c - s$$

$$r_{n+1} = c + s$$

$$\Delta_{n+1} = (\hat{t}_{0_n} - t_c)/\Delta t$$

Berglund, Andrew J., et al. "Fast, bias-free algorithm for tracking single particles with variable size and shape." Optics express <u>10.1364/OE.16.014064</u>

Iterative Centroid (CoM) to Minimize Bias

- •
- Monte Carlo simulations: to investigate bias with different localization methods ullet

Alternative approach: iterative centroid using a shifting (sub-bin) window [Berglund 2008].

$a = 1.5\sigma, b = 1000, N = 10000, s = 3$

Acknowledgements, Future Work, and Collaborations

- Thanks to the UST School of Engineering and undergraduate student Ryan Jans ullet
- Collaborations are important to our work. Please reach out! lacksquare
- Future investigations to co-design/optimize ToF sensors for science measurements (nondepth).

koerner.lucas@stthomas.edu

Electrical Instrumentation Lab

Electrical Instrumentation Lab

Backup Slides

Coincidence Detection Simulations

Monte Carlo simulations. 10,000 laser pulses, IRF $1\sigma = 100$ ps, TDC bin = 150 ps, 24 TDC bins; 16 pixel macro-pixel (ignore dead-time effects). Uniform background, Poisson distributed arrival times. 400 ps coincidence window; coincidence depth of 2. Signal centered at 1800 ps, Poisson distributed photon number, Gaussian spread of arrival times.

Coincidence Detection Simulations

Monte Carlo simulations. 10,000 laser pulses, IRF $1\sigma = 100$ ps, TDC bin = 150 ps, 24 TDC bins; 16 pixel macro-pixel (ignore dead-time effects). Uniform background, Poisson distributed arrival times. 400 ps coincidence window; coincidence depth of 2. Signal centered at 1800 ps, Poisson distributed photon number, Gaussian spread of arrival times.

Optimal TDC Bin Size

TABLE I

TDC BIN RESOLUTION (a) IN TERMS OF THE TEMPORAL SPREAD (σ) THAT PRODUCES A GIVEN PRECISION DEGRADATION FOR VARIOUS LEVELS OF SNR (N/b). The Precision at a = 0 is Represented As δ_0 (No Degradation). The Second Column Shows The a/σ Values for a 10% Degradation of Precision FROM THE ZERO TDC BIN WIDTH BASELINE, WHEREAS THE THIRD COLUMN SHOWS THE SAME FOR A 41% DEGRADATION

N/b	a/σ at	a/σ at
$(a/\sigma = 1)$	$\delta = 1.1 \delta_0$	$\delta = 1.41\delta_0$
200	1.55	3.22
20	1.47	2.78
2	1.35	2.38
0.5	1.31	2.26

Thompson vs. CRB

Percent difference between the CRB timing precision and the Thompson model as the SNR (N/b) and a/ σ is varied. In all cases, the CRB precision estimate is greater than the Thompson model.

Electrical Instrumentation Lab

